sb_predict.Rd
Make predictions with a Stickleback model
sb_predict(sb, sensors)
[Stickleback]
A trained Stickleback model (see
Stickleback
, sb_fit
)
[Sensors]
Bio-logging sensor data (see
Sensors
)
[Predictions]
The predicted events in the bio-logging sensor data
sensors
from a trained Stickleback model sb
.
# Load sample data and split test/train
c(lunge_sensors, lunge_events) %<-% load_lunges()
test_deployids <- deployments(lunge_sensors)[1:3]
c(sensors_test, sensors_train) %<-% divide(lunge_sensors, test_deployids)
c(events_test, events_train) %<-% divide(lunge_events, test_deployids)
# Define a time series classifier
tsc <- compose_tsc(module = "interval_based",
algorithm = "SupervisedTimeSeriesForest",
params = list(n_estimators = 2L, random_state = 4321L),
columns = columns(lunge_sensors))
# Define a Stickleback model
sb <- Stickleback(tsc,
win_size = 50,
tol = 5,
nth = 10,
n_folds = 4,
seed = 1234)
# Fit the model to the sample data
sb_fit(sb, sensors_train, events_train)
# Use the model to make predictions
predictions <- sb_predict(sb, sensors_test)
predictions
#> Predictions
#> 3 deployments.
#> With 116 predicted events.